
CloudI Integration

Framework

Chicago Erlang User Group – May 27, 2015

Speaker Bio

 Bruce Kissinger is an Architect with

 Impact Software LLC.

 Linkedin: https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38

 Email: brucekissinger at gmail dot com

https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38
https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38
https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38
https://www.linkedin.com/pub/bruce-kissinger/1/6b1/38

Agenda

 What is CloudI?

 How Do You Use It?

 Should You Use CloudI On Your Next Project?

What Is CloudI?

CloudI Definition

 CloudI is an open-source integration cloud that can be

deployed publicly or privately. It supports the development of

services that can be created in many different programming

languages and provides scalability and fault-tolerance.

Cloud Computing
 Essential Characteristics

 On Demand Self Service – provision computing resources without

requiring human intervention from the service provider

 Broad Network Access – capabilities are available over the network

and accessed using standard mechanisms

 Resource Pooling – can service multiple consumers using a multi-

tenant model with different resources dynamically assigned based on

demand

 Rapid Elasticity – rapid provisioning and scaling of resources

 Measured Service – resource usage can be monitored, controlled,

and reported

(Source: NIST Cloud Computing Definition, 2012)

CloudI Alignment
Cloud

Characteristic

CloudI Comments

On-Demand Self

Service

 Resources controlled via HTTP

request

Broad Network Access Uses standard network protocols

Resource Pooling Provided by underlying Erlang/OTP

capabilities

Rapid Elasticity Provided by underlying Erlang/OTP

capabilities

Measured Service Partial Timeouts, queue depth, and other

parameters measured. Limited

built-in reporting capabilities

Service Oriented Architecture
 Definition – a set of principles and methodologies for designing

and developing software in the form of interoperable services.
(Source: Wikipedia)

 Service - discrete unit of business functionality that is made
available through a service contract. This contract specifies all
interactions between the service consumer and service provider.

 Common Service Characteristics

 Encapsulated – hide the service implementation details

 Different Levels of Granularity – coarse-grained services provide
greater level of functionality within a single service operation. Fine-
grained services perform a single specific task.

 Stateless – do not remember the last thing they did nor care what the
next is

 Location and Language Independent – accessible to any authorized
user on any platform, from any location

 Modular – services are self contained and autonomous

CloudI Alignment
Service

Characteristic

CloudI Comments

Encapsulated Service contract defined using

configuration property list

Different Levels of

Granularity

 Coarse and fine grained services

supported equally

Stateless Use of a RESTful API protocol helps

enforce statelessness

Location and

Language

Independent

 Services can run on specific or all cluster

nodes. Supports 10 programming

languages

Modular Services are run in OS processes with an

Erlang thread monitoring them

CloudI Architecture

 A separate operating system

process is used to isolate each

non-Erlang service

 A separate Erlang process is

associated with each OS

process for monitoring and

control

 CloudI message bus provides

security and location

transparency

 CloudI leverages Erlang/OTP

internally

CloudI

Node 1

Cowboy

CloudI
Node 2

Service
2

Service
1

Request

CloudI Language Bindings

 Erlang

 Elixir

 C / C++

 Java

 JavaScript / Node.js

 Perl

 PHP

 Python

 Ruby

Built-In Services
 Filesystem – provides file read, write, notification functions

 HTTP Client – handles HTTP REST requests

 HTTP Servers – Cowboy and Elli

 OAuth – open authorization standard

 TCP – socket communication using TCP protocol

 UDP – socket communication using UDP protocol

 Timers – send messages with timer behavior

 Quorum – used to provide fault tolerance across distributed services

 Queue – persistent queue that survives restarts

 ZeroMQ – high-performance message library

 Elasticsearch – distributed full-text search server

 Map/Reduce service – fault tolerant, database agnostic

Built-In Database Services

 Database integration services

 MySQL

 PostgresSQL

 Memcached

 Riak

 Couchdb

 Cassandra DB and CQL

 Tokyo Tyrant

 Generic in-memory

CloudI API – Controlling the Cloud
 Access Control Lists

 Add or remove an ACL entry

 List ACL entries

 Service
 Add, Remove, or Restart a service

 List the subscriptions for a service instance

 List service configuration for a given service name

 List all services

 Nodes
 Set Configuration – can use Erlang or Amazon Web Services (AWS) node discovery

 Add or remove a node

 List all nodes, alive nodes, or dead nodes

 Logging
 Set logging file

 Set logging level

 Set logging format

 Set log redirection

 List configuration

 Code Path
 Add or remove a code path entry

 List code paths

CloudI API – Service Control

 Initialization / Termination – starts service and provides orderly shutdown

 Subscribe – subscribe to a service name pattern

 Unsubscribe – remove the subscription for a service name

 Send Sync – send a synchronous request to a service

 Send Async – send an asynchronous request to a service and get a
transaction id

 Forward - forward the service request to a different destination, possibly
with different parameters

 Mcast Async - send the service request asynchronously to all services
that have subscribed to a name pattern and gets a list of transaction ids

 Return - return a response to a service request

 Receive Async - receive an asynchronous service request's response

 Poll - accept service requests while blocking execution until either the
timeout value expires or the service terminates

How Do You Use CloudI?

Simple as 1, 2, 3

1. Add message subscriptions and handler templates to

existing code and compile

2. Create a configuration file

3. Register the service

Erlang – Export Functions

-module(book).

-behaviour(cloudi_service).

%% cloudi_service callbacks

-export([cloudi_service_init/4,

 cloudi_service_handle_request/11,

 cloudi_service_handle_info/3,

 cloudi_service_terminate/3]).

Erlang – Service Initialization

cloudi_service_init(_Args, _Prefix, _Timeout, Dispatcher) ->

 % subscribe to different request patterns

 cloudi_service:subscribe(Dispatcher, "newbooks/get"),

 cloudi_service:subscribe(Dispatcher, "popularbooks/get"),

 % return ok

 {ok, #state{}}.

Erlang – Handling Requests

cloudi_service_handle_request(Type, Name, Pattern, _RequestInfo, Request,

 _Timeout, _Priority, _TransId, _Pid, #state{} = State, Dispatcher) ->

 % based on the pattern and request, perform the appropriate action

 case Pattern of

 "/recommend/book/newbooks/get" ->

 ReplyRecord = find_new(Dispatcher); % find_new is a local function

 "/recommend/book/popularbooks/get" ->

 ReplyRecord = find_popular(Dispatcher); % find_popular is a local function

 _ ->

 ReplyRecord = cloudi_x_jsx:encode(["Invalid Request"])

 end,

 % send reply

 {reply, ReplyRecord, State}.

Erlang – Calling Another Service

…

Query = "select id, title from items",

Status = cloudi_service:send_sync(Dispatcher,

 "/db/mysql/book",

 <<>>,

 Query,

 undefined,

 undefined),

case Status of

 {ok , Result} ->

 Json_result = parse_items(Result);

 _ ->

 Json_result = cloudi_x_jsx:encode(<<"No data found">>)

 end,

Json_result.

Erlang – Service Configuration

[{internal,

 "/recommend/book/", % Service name

 book, % Erlang module

 [],

 immediate_closest,

 5000, 5000, 5000, undefined, undefined, 1, 5, 300,

 [{reload, true}, {queue_limit, 100}]

}]

Erlang – Registering the Service

CLOUDI_HTTP=http://localhost:6467/cloudi/api/erlang

Add the directory where the complied code is located

curl -X POST -d @path.conf

 $(CLOUDI_HTTP)/code_path_add

Add the service

curl -X POST -d @book.conf

 $(CLOUDI_HTTP)/services_add

Dashboard Examples

Java Service Example

 The general steps for adding a Java application to CloudI

are:

 Create a new class named Main that will initialize the

CloudI API

 Create a new class named Task that subscribes to various

CloudI requests and delegates the processing of these

requests to different Java methods

 Create a JAR file that contains the different Java classes

 Add the JAR file to the CloudI configuration

Java – Main Class

import org.cloudi.API;

public class Main {

 public static void main(String[] args) {

 try {

 final int thread_count = API.thread_count();

 assert (thread_count == 1);

 Task t = new Task(0);

 t.run();

 } catch (API.InvalidInputException e) {

 e.printStackTrace(API.err);

 }

 }

}

Java – Task Class – Part 1
import com.ericsson.otp.erlang.OtpErlangPid;

import java.io.UnsupportedEncodingException;

import org.cloudi.API;

public class Task {

 private API api;

 public Task(final int thread_index) {

 try {

 this.api = new API(thread_index);

 } catch (API.InvalidInputException e) {

 e.printStackTrace(API.err);

 System.exit(1);

 } catch (API.MessageDecodingException e) {j

 e.printStackTrace(API.err);

 System.exit(1);

 } catch (API.TerminateException e) {

 System.exit(1);

 }

 }

Java – Task Class – Part 2
 public void run() {

 try {

 // subscribe to different CloudI services

 this.api.subscribe("load_catalog/get", this, "startLoadCatalog");

 this.api.subscribe("generate_ratings/get", this, "startGenerateRatings");

 this.api.subscribe("load_predictions/get", this, "startLoadPredictions");

 // accept service requests

 this.api.poll();

 } catch (API.TerminateException e) {

 API.err.println("Book Utilities TerminateException caught " + e.getMessage());

 } catch (Exception e) {

 API.err.println("Book Utilities Exception caught " + e.getMessage());

 }

 }

Java – Calling Another Service

…

byte[] service_request =

 ("SELECT max(quantity) FROM items").getBytes();

org.cloudi.API.Response response =

 api.send_sync("/db/mysql/book", service_request);

…

Java – Service Configuration

[

 {external,

 "/book/utility/", % service name

 "/opt/java/jdk1.7.0_05/bin/java",

 "-cp /usr/local/lib/cloudi-1.5.0/api/java/ "

 "-ea:org.cloudi... -jar

/home/bruce/Projects/BookUtilities/deploy/BookUtilities.jar",

 [],

 lazy_closest, tcp, default,

 50000, 50000, 50000, undefined, undefined, 1, 1, 5,

300, []

 }

]

Simple as 1, 2, 3, 4, 5, 6, 7

1. Design the message API

2. Design the message data structures – especially if using

mixed languages

3. Add message subscriptions and handler templates to

existing code and compile

4. Create a configuration file

5. Register the service

6. Repeat Step 5 for all nodes in the cluster

7. Measure performance and fine tune the service

configuration

Design the Message API – Part 1

Design the Message API – Part 2
Use Case Method URL

Browse New Books GET /book/newbooks

Browse Popular Books GET /book/popularbooks

Browse Recommended Books GET /book/recommendedbooks?user=X

View Book Details GET /book/allbooks?id=X

Download Book GET /book/download?id=X&user=Y

Create New User GET /book/newuser

Get Unrated Books GET /book/unrated?user=X

Rank Downloaded Book POST /book/download/

Add Book to Collection POST /book/allbooks/

Should You Use CloudI On Your

Next Project?

Strongly Consider

 If your project needs cloud-type characteristics

 On Demand Self Service

 Broad Network Access

 Resource Pooling

 Rapid Elasticity

 Project deployed to a internal or external cloud

 CloudI has strong support for Amazon cloud

 If your project uses a service-oriented architecture style

 Set of principles and methodologies for designing and developing

software in the form of interoperable services

 If you can leverage the built-in services

 If you are using a mix of languages

 If you need Erlang-style fault tolerance with these languages

Investigate More

 If you are develop completely in Erlang/OTP, CloudI can still

offer some benefits including:

 Use of CloudI built-in services

 A service container abstraction for simpler Service Oriented

Architecture development.

 Finer control of service start order and runtime characteristics

 See http://www.cloudi.org/faq.html#4_Erlang for list of other

potential benefits

http://www.cloudi.org/faq.html#4_Erlang
http://www.cloudi.org/faq.html#4_Erlang
http://www.cloudi.org/faq.html#4_Erlang

Probably Not For You

 If you do not use a service-oriented architecture style

 If you need very robust service or message security

 CloudI does not implement role-based security for calling

services

 CloudI does not use secure encrypted messages

 If you need very large scale clusters

 CloudI relies on Erlang/OTP for cluster management &

communication

 Practical limit is < 100 nodes

 If your project is deployed on Windows-based operating

systems

 In theory this is possible, but installation might be challenging

Additional References
 Project site – http://cloudi.org

 Mailing list - http://groups.google.com/group/cloudi-questions

 CloudI Tutorial - http://www.impactsoftwarelabs.com/cloudi

Questions?

